RESEARCH ON THE OPTIMIZATION OF SOME IN VITRO DISSOLUTION TEST PARAMETERS IN MEDICINAL SUBSTANCES AND IN VITRO - IN VIVO CORRELATIONS

PHD THESIS - ABSTRACT

Scientific Advisor: Prof. Dr. Árpád Gyéresi
PhD Candidate: Éva Katalin Kelemen

Târgu-Mureș
2013
CONTENTS

Introduction

I. GENERAL PART

I.1. Evaluation guidelines of medicinal substance release in pharmaceutical dosage forms intended for oral use

I.1.1. Overview of oral medications

I.1.2. Classification of dosage forms according to their way of releasing medicinal substances

I.1.3. Dissolution of the drug substance and factors affecting dissolution speed

I.1.3.1. Solubility of solids in liquids

I.1.3.2. Dissolution speed of solids in liquids

I.1.3.3. Factors influencing in vitro dissolution speed rate

I.1.3.4. Determination of the dissolution rate - dissolution test

I.1.3.4.1. Methods and equipment

I.1.3.4.2. Composition, volume and temperature of the dissolution environment

I.1.3.4.3. Sampling for analysis

I.1.3.4.4. Evaluation of the results

I.2. Formulation and analytical problem definition

I.2.1. Acquiring a representative sample

I.2.2. Sample preparation and processing for analysis

I.2.3. The process of separation

I.2.4. Analytical measurements

I.2.5. The calculation of analytical results and error assessment

I.3. Preformulation and formulation of extended-release medications

I.3.1. Characteristics of the administration route (gastrointestinal tract)

I.3.2. Physicochemical properties of the medicinal substance

I.3.3. Pharmacokinetic and pharmacodynamic properties of the medicinal substance

I.3.4. Type of pharmaceutical dosage form (release technique)

I.3.5. Production technologies
I.3.6. Release profile of the active substance and ways of achieving prolonged release

I.3.7. Kinetics and mechanism of medicinal substance release

I.4.1. Bioavailability

I.4.2. In vitro - in vivo correlations

I.5. Indapamide, Simvastatin, Loratadine, Desloratadine as experimental medicinal substances

I.5.1. Indapamide

I.5.2. Simvastatin

I.5.3. Loratadine and Desloratadine: tricyclic antihistamines, with H1-antagonist mechanism of action

II. EXPERIMENTAL PART (Own Contribution)

II.1. The development of some techniques for dissolution analysis of the studied medicinal substances

II.1.1. Theoretical premises of dissolution testing

II.1.1.1. Relevance of dissolution testing

II.1.1.2. Analytical methods as support for dissolution testing

II.1.2. The development of a dissolution technique for prolonged-release tablets containing Indapamide

II.1.2.1. Selecting the dissolution environment

II.1.2.2. Selecting the dissolution apparatus

II.1.2.3. Determining the number of rotations per minute of the dissolution apparatus

II.1.3. Developing a dissolution technique for tablets containing Simvastatin

II.1.3.1. Selecting the proper dissolution environment

II.1.3.2. Selecting the rotation speed for the dissolution apparatus

II.1.3.3. The importance of treatment of sample solutions with manganese dioxide

II.1.4. The development of a dissolution technique for tablets containing Loratadine

II.1.4.1 Selecting the dissolution environment
II.1.4.2. Selecting the dissolution volume

II.1.5. The development of a dissolution technique for tablets containing Desloratadine

II.1.5.1. Selecting the dissolution environment

II.1.5.2. Selecting the dissolution volume

II.1.6. Verifying the discriminatory profile and validating the dissolution technique of Indapamide sustained release tablets

II.1.6.1. The discriminatory profile of the technique

II.1.6.2. Validating the dissolution technique

II.1.6.2.1. Selectivity and specificity

II.1.6.2.2. Linearity

II.1.6.2.3. Accuracy

II.1.6.2.4. Precision (fidelity) of the method

II.1.6.2.5. Stability of the solution

II.1.6.2.6. Robustness

II.1.7. The identification and control of impurities in sustained release tablets containing Indapamide originating from powder mixture too

II.1.8. The dosage of medicinal substance derived from powder mixture and tablets containing Indapamide

II.2. Preformulation studies for the development of sustained-release tablets containing Indapamide

II.2.1. Aspect of the active substance

II.2.2. Particle size distribution

II.2.3. Solubility

II.2.4. Density

II.2.5. Compression properties

II.2.6. Hygroscopicity

II.2.7. Wetting properties

II.2.8. Determining the pH value of the aqueous suspension

II.2.9. Determining the dissolution rate (intrinsic)

II.2.10. The compatibility of the medicinal substance with the excipients
II.3. The applied technological approach in order to achieve prolonged release tablets containing Indapamide

II.3.1. Excipients – characteristics

II.3.1.1. Hypromellose
II.3.1.2. Lactose monohydrate
II.3.1.3. Microcrystalline cellulose
II.3.1.4. Polyvidone (polyvinylpyrrolidone)
II.3.1.5. Hydrophobic colloidal silica (Aerosil)
II.3.1.6. Magnesium stearate

II.3.2. Variables of the optimization process during the preparation of prolonged-release tablets containing Indapamide

II.3.2.1. Preparation
II.3.2.2. Optimizing the compression phase

II.3.3. Testing dissolution profiles in different dissolution environments

II.3.3.1. Testing dissolution profiles in 0.1 M hydrochloric acid
II.3.3.2. Testing dissolution profiles in pH = 4.5 phosphate buffer
II.3.3.3. Testing dissolution profiles in environments that simulate intestinal conditions of an empty stomach
II.3.3.4. Testing dissolution profiles in environments that simulate intestinal conditions after ingestion

II.3.4. Stability of the developed medicinal product

II.3.5. Tested sustained release tablets containing Indapamide manufactured for the in vitro in vivo correlation study

II.4. The bioavailability and in vitro in vivo correlation study of the product

II.4.1. Bioequivalence study wherein the modified release structures are tested

II.4.1.1. The evolution of the pilot bioequivalence study
II.4.1.2. In vitro in vivo correlation
II.4.1.2.1. In vitro data
II.4.1.2.2. In vivo data
II.4.1.2.3. The development and validation of correlation

Bibliography
The importance of active substance release from pharmaceutical forms for attaining absorption and pharmacological effects is well known. The main purpose of this research was the study of active substance release from solid pharmaceutical forms under conditions that are as close as possible to the physiological conditions and the scientific background of the standardization of in vitro dissolution techniques especially for poorly soluble drug substances. Hence dissolution techniques were developed for the investigated medicinal substances. Based on *in vitro* dissolution tests obtained by the aid of the researched medicinal substances I decided to include the solid pharmaceutical form of Indapamide with modified active substance release. I performed preformulation, formulation and technology optimization studies and finally I investigated in vitro release profiles in the developed pharmaceutical form in biorelevant media. Finally I performed *in vitro-in vivo* correlation studies with developed formula.

The thesis comprises 2 main parts. The general part is a compilation of information about the current state of science. The experimental part comprises the description of the personal study as follows:

1. **The development of some dissolution techniques**

 During the development of a dissolution technique, *in vitro* and chromatographic analysis were selected for the **dissolution of extended-release tablets containing Indapamide (base)**. The type of dissolution apparatus, composition of the dissolution medium, and the number of rotations per minute was determined, respectively for the dosage of the dissolved drug substance, chromatographic conditions were selected. **In case of Simvastatin tablets (base) a dissolution technique was developed.** During development the dissolution conditions were optimized. A spectrophotometric method was used in order to determine the dissolved Simvastatin. **In order to study the in vitro release rate of Loratadine (base) tablets** a dissolution technique was developed and for the quantitative determination of the released drug substance the CLP method was used.

 After studying the in vitro release of some drug substances that are poorly soluble in water or insoluble, I chose to study **Desloratadine** (salt), an active substance which is highly soluble in water. After optimizing the dissolution rate a spectrophotometric method was developed to determine the released drug substance.
II. Based on the performed experiments on the four medicinal substances I decided to conduct further research on Indapamide, a water-insoluble drug substance whose inclusion in a solid pharmaceutical form with prolonged release and appropriate bioavailability proved to be a technological challenge. In order to perform formulation and optimization studies on the drug substance of the tablets a Contract Laboratory Program (CLP), method of quantitative determinations was developed, aimed to determine impurities in the tablets. The discriminatory character of the dissolution method was tested and the method itself validated.

III. In the framework of a preformulation study the properties of the drug substance and excipients were investigated. During formulation I monitored the followings: appropriate selection of agent to create a hydrophilic matrix, hypromellose, determining the appropriate amount of hypromellose per tablet, appropriate selection of the other excipients, optimization of the used technology to develop manufacturing technology. In the prolonged release tablets, developed with the previously described technology, the in vitro dissolution profile in different pH dissolution media respectively in dissolution media simulating similar conditions to the intestine was tested, and at the same time a stability study was also performed.

IV. A level A in vitro/ in vivo correlation was performed between the in vitro and in vivo release data. Subsequently to correlation the following conclusion could be drawn: the developed in vitro test conditions can be considered biorelevant for the developed prolonged-release tablets.

In conclusion, the developed dissolution methods can be used successfully in the development and manufacturing of some drugs containing Indapamide, Simvastatin, Loratadine and Desloratadine. The developed prolonged-release tablets containing Indapamide as drug substance are stable, have similar dissolution profiles to the selected reference product and the developed dissolution technique, based on level A in vitro - in vivo correlation, is biorelevant. The described technology corroborated with the developed analytical methods allows both implementation and patenting.

Key words: dissolution test, CLP, spectrophotometry, Indapamide, preformulation, formulation, optimization, stability study, in vitro- in vivo correlation.