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Chapter 1

Introduction

Nonlinear systems are prevalent and extensively utilized across a diverse range of domains.
As described by Schoukens and Ljung in [1], any system that deviates from linearity is
considered nonlinear. In a general context, nonlinear systems are characterized by the
absence of a linear relationship between their inputs and outputs.

The observations generated by these systems are usually in the form of time series.
Time series data represent a continuous collection of sequentially measured values
and can originate from almost all scientific domains, where system measurements are
collected or measured over time. In real-life scenarios, in most cases, time series data
originate from live observations or real-time system sensor measurements.

A model can be defined as a simplified representation of the relationship between
system inputs and outputs, or as described by Bala et al. [2] as “A substitute of
any object or system. A written description of a system is a model that presents one
aspect of reality. The simulation model is logically complete and describes the dynamic
behavior of the system”. Strictly from a nonlinear system modeling perspective, three
main approaches are utilized, namely white-box, black-box, and grey-box modeling.

Machine learning is becoming an important technique for black-box modeling as the
complexity of data and the need for precise predictions have increased. A specific class
of machine learning algorithms, namely neural networks, has been extensively utilized
for nonlinear modeling tasks [3]. Among the popular models utilized for continuous
nonlinear system modeling, Recurrent Neural Networks (RNN), Long Short-Term
Memory (LSTM), and Nonlinear Autoregressive Neural Networks with eXternal inputs
(NARXNN) have gained popularity for their ability to capture intricate temporal
dependencies and adapt to dynamic real-world scenarios [1]. However, standard RNNs
suffer from what is known as vanishing and exploding gradient [5]. Furthermore, due to
their simple architectures and the issues mentioned above, standard RNNs are unable to
efficiently learn long sequences [6]. To address these challenges, advanced models, such
as LSTMs, have been developed. These advanced models incorporate gating mechanisms

along with concepts such as short- and long-term memory.



In real-life scenarios, these systems may be distributed in large geographical areas,
with dispersed sensors that feed the readings. This raises the question if such systems
should be modeled using a single self-contained model or utilizing multiple smaller
models for each system component or subcomponent. The approach here would be to
utilize an ensemble of learners [7].

Generally, any ensemble framework can be viewed and defined using three
characteristics that affect its performance. The first is the dependence on the trained
baseline models, whether sequential or parallel. The second characteristic is the fusion
method, which involves choosing a suitable process for combining outputs of the
baseline models using different weight voting approaches or meta-learning methods.
The third characteristic is the heterogeneity of the baseline models, whether
homogeneous or heterogeneous. Although ensemble methods date back more than two
decades, recent works still prove their efficiency to this day [3]. Similarly, in the field of
anomaly detection, the efficiency of approaches can be greatly improved by using
ensemble methods [9].

Transitioning to the practical application of the thesis, specifically in the field of
anomaly detection. As illustrated by Aggarwal et al. [10] three primary methodologies
are used to detect anomalies: supervised, unsupervised, and semisupervised. Generally,
supervised approaches yield great results but are limited to detecting only learned
anomalous patterns. Furthermore, obtaining labeled data for all possible scenarios
could be difficult or unrealistic in certain scenarios. As a result, unsupervised anomaly
detection techniques represent an interesting research topic.

In continuous time series and data streams, the detection of deviations from normal
behavior (e.g., change detection) requires the use of prediction and forecasting models
[11]. In such instances, normal behavior can be modeled through various techniques,
categorizing anomalies as obvious or subtle deviations from normality [12].

Taking into consideration the previous definitions, it becomes obvious that anomaly
detection in continuous time series data originating from nonlinear systems presents
numerous challenges. First, modeling the time series, or the generative process of the
time series, should be carefully addressed as unreliable and inaccurate models yield poor
predictions, which in turn translates to imprecise detection. Second, an appropriate
similarity measure must be selected. Last, the anomaly detection technique has to
be designed with consideration of the temporal component, the nature of the model’s
output, and the types of deviations to be detected.

Having established an accurate representation of the nonlinear system, using
low-complexity prediction models, the next step involves the design of efficient detectors.
These detectors must utilize the output of the predictors to detect deviations from the
normal learned behavior. We can argue that such detectors can be designed to identify

cumulative deviations using point-by-point approaches or window-based techniques.
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These approaches are also identified by Blazquez-Garcia et al. in a recent review of
anomaly detection techniques in time series data [13].

In a different direction, the authors of [13] highlight the fact that most of the
analyzed anomaly detection techniques focus on detecting parts of the time series that
differ substantially from the expected value. However, some anomalous points, or
series of points, might resemble the anomaly-free time series, and a methodology of
cumulating small deviations over time might provide better results in such scenarios.
Furthermore, an interesting unexplored direction might be the one in which outliers
might propagate to different variables of a time series. Furthermore, an in-depth analysis
of the computational costs of running such techniques in real-time scenarios is still

needed.

1.1 Research Objectives

Although the main focus of the thesis is the design of prediction-based unsupervised
anomaly detection techniques for time series data originating from nonlinear systems,
specific research objectives (RO) have been defined to address these challenges.

« RO1: Develop an enhanced Long Short-Term Memory prediction model for time
series data originating from nonlinear systems.

e RO2: Develop a new feature ranking and selection methodology using a
sensitivity analysis-based approach. In addition, conduct an in-depth analysis of
the prediction model in terms of dealing with missing values and overfitting.

e RO3: Develop efficient unsupervised detection methodologies that utilize the
output of the prediction models, in the context where the predictors are trained
only with anomaly-free observations.

¢« RO4: Develop a new adaptive ensemble of detectors that utilizes a new efficient
decision aggregation methodology.

« ROS5: Implement the proposed solutions in diverse environments (e.g., Python,
MATLAB) and embedded systems to measure resource usage on devices with
limited capabilities.

e ROG: Test and validate the proposed methods using real and synthetic time series
datasets originating from nonlinear systems. Additionally, apply the proposed

prediction and detection techniques to solve real-world problems.

1.2 Thesis Structure

In addition to this introductory chapter, the current thesis is organized into five chapters.
e Chapter 2: The second chapter introduces and defines the important concepts
that are utilized throughout the thesis, including historical backgrounds. This

chapter also presents relevant and recent studies related to the approaches
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presented in the thesis, including nonlinear modeling, machine learning approaches,
hyperparameter optimization techniques, and anomaly detection solutions.

e Chapter 3: The third chapter introduces the LSTMTF model for nonlinear

system modeling. LSTMTF encompasses an enhanced LSTM model with a
modified version of the Teacher Forcing algorithm. Additionally, this chapter
presents an extensive hyperparameter analysis and a prediction performance
comparison with various state-of-the-art models.
The prediction performance comparison is performed between the proposed
LSTMTF model and various other machine learning prediction algorithms
including NARXNN, Multi-Layer Perceptrons, Recurrent Neural Networks,
Support Vector Machines, AutoRegressive with exogenous input models, and
Random Forests.

e Chapter 4: The fourth chapter introduces two feature selection methodologies
that are utilized as a means to reduce the complexity of the LSTMTF model.
Additionally, this chapter addresses other significant issues, including model
overfitting and mechanisms to handle missing data.

e Chapter 5: The fifth chapter illustrates two directions in the field of anomaly
detection, namely tampering and fault detection, together with two proposed
ensemble-based detection approaches. The performance of the anomaly detection
ensembles introduced in this chapter is compared with numerous state-of-the-art
supervised and unsupervised approaches.

e Chapter 6: The sixth and final chapter of the thesis presents the main
conclusions, the original scientific contributions, possible future direction, research

funding, and the author’s participation in research projects.



Chapter 2

Related Work

2.1 Machine Learning Modeling, Prediction and Teacher

Forcing

Today, machine learning algorithms are the “go-to” for solving a plethora of real-life
problems in various domains, from healthcare, finance, and manufacturing all the way to
agriculture. On a larger scale, machine learning can be considered an umbrella term that
incorporates a wide range of algorithms and models proposed for specific tasks, including
medical diagnosis [14], predictive maintenance [15], text authorship attribution [16],
and anomaly detection [17]. In the direction of system modeling, machine learning
techniques are widely employed to create accurate data-driven models. These approaches
are utilized in various domains, including earth sciences, various industrial domains,
mathematics and physics, and even user action modeling.

One specific subclass of machine learning includes neural networks. Since the first
mention of artificial neurons almost 80 years ago [18], neural networks have constantly
evolved and have been widely applied in numerous areas and domains. For nonlinear
system modeling various well-known architectures are utilized, including RNNs, LSTMs,
and NARXNN [3].

In continuous time series and continuous data streams, where an underlying temporal
component is present, the detection of deviations from normal behavior requires the
utilization of prediction and forecasting models. However, for neural networks to
effectively capture the temporal dependencies and dynamics present in nonlinear systems,
which can be described by differential equations, the current inputs alone may not be
sufficient. In such instances, the previous outputs or states of the modeled system may
provide important information about the behavior of the system and may be necessary
for accurate predictions of the subsequent outputs [19]. In such systems, the previous
output or system state can be seen as an additional input that helps the neural network

capture the behavior and dynamics of the system over time [20].
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When modeling the dynamics of nonlinear systems, there exists a notable approach
where the incorporation of the prior output or system state is regarded as an additional
input, thus enhancing the neural network’s ability to effectively capture the temporal
behavior and dynamics of the system [20]. This can be achieved through the application
of a technique known as Teacher Forcing, as introduced by Williams and Zipser in [21].

In short, the original Teacher Forcing (TF) denotes a training algorithm for RNNs,
where during training the output ground truth (e.g., observed) value is fed as an
additional input to the model, while during inference the model takes the prediction
from the previous time step as an extra input.

In Goodfellow’s book [5], TF was also presented as a neural network training
technique, applicable to recurrent neural networks that have output to hidden
connections. The author continues to state that this technique originates from the
maximum likelihood criterion, where during the training phase, the neural network
receives the ground truth value of the output as input in the next time step. Moreover,
Goodfellow also states that TF is also applicable to models that have hidden-to-hidden
connections as well. In this scenario, training is carried out using both TF and
backpropagation through time (BPTT) [22].

2.2 Hyperparameter Selection, Model Benchmarking and

Feature Analysis

Thomas Brueuel, from Google’s research team, studied the behavior and performance
of LSTM classifiers in [23]. This study analyses the behavior of LSTMs for different
hyperparameters, but also how the choice of nonlinearities affects performance.
Among the tested hyperparameters we find the learning rate, number of hidden units,
and mini-batch size. The authors focused on digit classification on two popular
benchmarking datasets, namely MNIST, which is an isolated digit handwriting
classification dataset, and UW3, which is an OCR evaluation database. The results
revealed that the performance of LSTM classifiers depends mainly on learning rates,
while batching has little to no effect. Softmax training produced better results
compared to the least squares approach. Moreover, LSTMs without peephole
connections yielded superior performance.

In a more recent study, Siami-Namini et al. [24] analyzed the time series forecasting
performance of unidirectional LSTMs and bidirectional LSTMS (BiLSTMs). The authors
compared the performance of auto-regressive integrated moving average (ARIMA)
models, LSTMs, and BiLSTMs in the context of predicting financial time series data.
One interesting aspect of this research is the prediction performance when the time series
data are learned in both directions (i.e., past-to-future and future-to-past). Their results
showed that BiLSTM’s training time was slower, but outperformed the unidirectional

LSTM and ARIMA models in terms of prediction accuracy. Nonetheless, the authors
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provided no architectural or hyperparameter information about the tested neural
networks, or whether the two architectures were trained and tested with the same

set of hyperparameters.

2.3 Anomaly Detection in Time Series Data

Anomalies or outliers, as defined by Mehrotra et al. in [25], are “substantial deviations
from the norm”. Here, norm defines normality, be that a state, a behavior, or some
proprieties of the observed system, object, process, or even a person or group of
persons. This normality is defined depending on the context and domain where anomaly
detection approaches are applied. While in [25] the terms anomaly and outlier are used
interchangeably, the authors highlight that in some articles the term anomaly is utilized
when discussing processes, and outliers are introduced when discussing data.

The first direction focuses on fault detection. Fault detection is a specific
application of anomaly detection focused on identifying deviations from the normal
behavior, caused by either sensor failures, component failures, or interventions on the
system. Yoon and Macgregor in [20] state that “The purpose of fault detection is to
determine the occurrence of an abnormal event in a process”. Considering large,
sometimes distributed systems, the effects of some faults might propagate between the
interconnected subsystems or components of the larger system. This effect is visible in
the time series generated by the system.

The second direction is focused on detecting anomalies that are explicitly hidden by
a malicious individual, this is further named tampering. Tampering denotes a procedure
that alters the system behavior in order to gain particular advantages (e.g., financial,
operational). Furthermore, in order for tampering to remain undiscovered, the same
malicious person hides the effects of the modifications by injecting false readings that
mimic the normal behavior of the system. These false injected readings follow a similar
distribution as the ones from the normal operating conditions of the system, and they
also mask the real readings that would reflect the effects of tampering in certain system

components.



Chapter 3

LSTMTF: Enhanced Long
Short-Term Memory for

Nonlinear Systems Modeling

The original TF version, as proposed for standard RNN models, uses the previously
observed output value as an additional input during training, during inference the model
output is looped back as input. This chapter describes an enhanced LSTM model named
LSTMTF, which combines the standard LSTM with TF in an innovative way. The
LSTMTF model utilizes the previously observed output value as an additional input
during both the training and inference procedures. This chapter also describes the
LSMTFC model, which denotes a standard LSTM model with the TF algorithm, where
the previously observed output value is utilized only during training.

The effects of different hyperparameters are analyzed for the newly introduced
LSTMTF, LSTMTFC, and the standard LSTM models, using an empirical approach.
The hyperparameters include the input sequence length, the number of time delays,
the mini-batch size, the learning rate, and the number of hidden units. The models are
trained and tested on time series data originating from a well-known nonlinear system,
namely on the Tennessee Eastman process dataset [27, 28].

Next, the prediction performances of different variants of the LSTM model are
compared with the NARXNN model. The authors of some large-scale studies, such as
those in [24], performed thousands of experiments in this direction. Similarly, for this
chapter alone, approximately 100,000 models were trained and tested using a wide range
of hyperparameters, configurations, and prediction modes.

This chapter also studies the exposure bias effect [29] for neural networks trained with
TF in its original form. Although exposure bias can affect the prediction performance
of neural networks, this chapter will also discuss the advantages gained by using LSTMs

with TF for anomaly detection tasks.
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Additionally, to further validate the LSTMTF model, additional experiments are
performed. Here, the model is compared with 11 state-of-the-art parametric and

nonparametric forecasting, regression, and prediction models.

3.1 Proposed Architecture

3.1.1 Long Short-Term Memory Model

The LSTM model can be defined as an enhanced version of an RNN, capable of capturing
long- and short-term dependencies from data sequences, while also solving the exploding
and vanishing gradient problem [30]. The standard LSTM model will further be named
Vanilla LSTM (VLSTM). This model can comprise multiple layers that incorporate
sequential LSTM units. These units take the current input vector, denoted as X (t),
together with the previous hidden state vector of the layer, further denoted as h(t).
The cell state vector, denoted as C(t), is updated using three gates, namely, the input
gate I(t), the forget gate f(t), and the output gate o(t).

3.1.2 Long Short-Term Memory Model with Teacher Forcing

In short, the standard LSTM represents a nonlinear function of the previous inputs
and hidden states. Subsequently, the LSTMTF represents a nonlinear function of the
previous inputs, hidden states, and observed outputs.

As mentioned above, applying TF involves modifying the training procedures by
adding, at each time step, an extra input, which is the previous ground truth value
y(t — 1). This value is further propagated to all the LSTM gates. This extra input
is required during both training and inference. If in the inference phase the output
ground truth value is not available, it is replaced by the previous predicted value. TF
is applicable to models that have a recurrent connection from their output leading
back into the model and can be used as an alternative to Back Propagation Through
Time (BPTT) when the model lacks hidden-to-hidden connections. However, TF can
still be applied in conjunction with BPTT for training models with hidden-to-hidden
connections [5].

As described in [5], training models with the original version of TF can lead to poor
prediction results, as during inference the model could be exposed to different data.
This is referred to as exposure bias. Exposure bias occurs when a machine learning
model is not exposed to a sufficiently diverse range of data during training. Essentially,
exposure bias occurs when the distribution of data seen by the model during training

does not accurately reflect the distribution of data it will encounter in the real world.
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3.2 Hyperparameter Analysis

The performance and predictive capabilities of the three models (i.e., VLSTM, LSTMTF,
and LSTMTFC) are tested using two distinct configurations and in two operating modes.

First, in terms of the number of inputs and outputs, the models are tested as
multi-input single-output (MISO) and multi-input multi-output (MIMO). The MISO
configuration involves predicting one variable using multiple input variables.
Conversely, the MIMO configuration involves predicting multiple variables using
multiple input variables.

Second, in terms of prediction modes, two approaches are followed, namely, M20 and
M2M. In the case of M20, the models will take as input a sequence of X;? inputs; here,
¢ denotes the number of time steps (in other words, the length of the input sequence)
and n denotes the number of input variables and will output only the final predicted
value of the sequence. To exemplify, for every sequence of ten input values, the model
will output the next value in the sequence.

In the case of M2M, the models similarly take as input a sequence of X? values
and output another sequence of values of size ¢, the first prediction starting at ¢g + 1.

Here, ty denotes the time of the first value in the input sequence.

3.3 Summary

This chapter introduced the LSTMTF, an LSTM model combined with a new variant
of the TF algorithm applied during both training and inference. This chapter also
offered an in-depth analysis of LSTM models trained with and without TF. TF was
applied in two variants, with the actual (observed) value fed back as input during both
training and testing, as proposed for anomaly-detection tasks (e.g., LSTMTF), and as
originally proposed, with the predicted values fed back during testing (e.g., LSTMTFC).
Furthermore, this chapter also introduced training and testing time measurements
for the tested architectures.

The training and testing procedures were performed using a wide range of both
internal and external hyperparameters, while the results were analyzed using various
performance metrics. The models were tested in multiple configurations, namely
multi-input single-output and multi-input multi-output using two prediction modes:
many-to-many and many-to-one. For reproducibility, all the tested neural network
configurations, hyperparameters, and datasets were documented throughout this chapter.

In both configurations, MISO and MIMO, the VLSTM (i.e., the standard LSTM
without teacher forcing) obtained better results in terms of training convergence time for
the M2M prediction method; however, in terms of prediction MAE, LSTMTF obtained
better results. Out of the three neural networks, LSTMTFC obtained the worst results
in terms of testing MAE using the M2M approach.
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In every experimental scenario, there was a small decrease in the prediction error
when switching from the MISO to the MIMO configuration on the same neural network
type. However, the time taken for training and testing increased by 21% for training
and 28% for testing when using the MIMO configuration. Overall, the input sequence
length, mini-batch size, number of hidden units, and number of lags influenced the
training and testing performance. Conversely, the learning rate’s influence appeared to
be smaller in all the experiments for all neural network architectures.

As illustrated by the experimental results, the architecture of LSTMs can be
significantly reduced, while still maintaining prediction performance. This was observed
while using fewer features for the MISO architecture, while still obtaining similar results
to the MIMO architecture. Moreover, by using TF, it was shown that the models can
be trained with a reduced number of samples while using only one hidden layer and
still outperform other models. The reduced architecture (i.e., number of inputs, one
hidden layer, and number of hidden units) and the possibility of training models with
fewer samples make such models suitable candidates for real-time operations and on
resource-constrained devices.

The proposed LSTMTF model was also compared with 11 additional parametric
and nonparametric forecasting, regression, and prediction models, including some
state-of-the-art ones. These additional experimental results illustrate the modeling
capabilities of the proposed LSTMTF in terms of measured MAE values. In all
experiments, the proposed model yielded lower MAE values compared to the 11 models
tested.



Chapter 4

Feature Analysis for LSTMTF

This chapter enhances the LSTMTF model, as introduced in the previous chapter, by
proposing two feature selection methodologies, an overfitting analysis approach, and a
method for dealing with missing values in real-time. This chapter also presents extensive

experimental evaluations and results for all proposed methods.

4.1 Feature Selection

In the direction of feature selection, this chapter introduces a correlation-based feature
selection method. This method leverages the Pearson’s coefficient score to select the
group of inputs for each output variable. As part of the second approach, a new
method inspired by sensitivity analysis [31] is introduced. This method includes feature
ranking and automatic feature selection, for regression tasks. Although this method is
proposed and tested on LSTMTF models, it is also suitable for other models. Following
a backward approach, feature ranking is performed by sequentially eliminating inputs
and measuring changes in model prediction residuals using the Energy Distance metric
[32]. Automatic feature selection process includes a forward approach, starting with a
predetermined number of features, and incorporates at each step additional features

based on their ranks, until a stopping criterion is met.

4.1.1 Correlation Based Selection

This approach follows a correlation-based technique for selecting the groups of inputs
and outputs. The selection process leverages Pearson’s product-moment correlation
coefficient [33]. Here, from numerous measured signals, the ones that exhibit a high
correlation coefficient with the chosen output signal are selected. Pearson’s product
momentum correlation (Pearson’s correlation) describes the strength of the relationship

between variables.
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4.1.2 Score Based Selection

In summary, the methodology for feature ranking utilizes a sensitivity analysis-based
backward approach, which does not require retraining the LSTM models. The resulting
list of ranked features is employed for feature selection. The selection process follows
a forward-based approach where, based on a stopping criterion, the highest-ranking
features are incrementally added one by one, and the model is retrained at each
step. The same feature selection procedures are followed for multiple output variables.
Furthermore, in both approaches, the Energy Distance is utilized to compute a distance

score.

4.2 Overfitting Tests

To develop the overfitting tests, we begin with the premise that LSTM models with
Teacher Forcing overfit the previous output ground truth value. Consequently, during
inference, these models predict close to the previous ground truth value, ignoring the
spatio-temporal relationship between the rest of the inputs and the output variable, this
is y-overfitting.

If a model y-overfits, it introduces the following assumptions. First, disabling any
of the additional inputs would not have any influence on the model’s performance, as
it “relies” only on the previous output ground truth value to make new predictions.
Second, disabling all additional inputs would not affect the model’s performance, based
on the same assumption as above. Third, setting the output ground truth value to a
constant would not affect the performance, as the model would only predict close to the
previous ground truth value.

The approach outputs an overfitting score, measuring the distance between the
prediction error distribution in various scenarios, using three distribution distance

metrics.

4.3 Missing Values

For the LSTMTF model, it is assumed that the output ground truth values are available
during both training and inference. Nevertheless, a significant issue is raised in this
approach when the output ground truth values are missing due to unforeseen events
(e.g., communication faults and erroneous sensor readings).

While many imputation techniques exist for dealing with missing data, very few of
them are addressing dealing with missing data in real time scenarios. As a solution to
this issue, this chapter introduces an approach that does not require using any additional

models for imputation.
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The proposed approach to deal with missing values involves switching the same
model from using the output ground truth value, as an extra input, to using its previous
predicted value, in real-time, when the target values are missing.

For this scenario, we are considering the case where only a small amount of values
are missing, due to communication faults or due to erroneous measurements. In a real
scenario, missing values over a prolonged period might be clear indicators of failures
(prompting the initiation of internal alert mechanisms) and might even result in several
systems shutting down, however, in the case where only a few measurements are missing,

our proposed solution should continue functioning.

4.4 Summary

This chapter presented two approaches for feature selection utilizing Pearson’s correlation
coefficient and a novel score-based approach. The second proposed approach is inspired
by sensitivity analysis and is applicable for regression tasks. In this direction, the Energy
Distance was utilized for feature ranking, together with a forward-based feature selection
methodology. The experimental results illustrated that the score-based approach can
obtain notable and comparable results to well-established techniques, with low RMSE
values and high R? values.

Additionally, this chapter proposed a novel method to test if models that utilize
TF heavily rely only on the previous ground truth value and ignore other exogenous
inputs (y-overfitting). In this case, these models might naively predict incorrect new
values. This investigation focused specifically on the LSTMTF model and utilized three
distribution distance metrics. The experimental evaluation results highlighted that all
the selected distance metrics demonstrated that the model did not y-overfit in any of
the tested scenarios.

This chapter also introduced a method for dealing with missing data in real time.



Chapter 5

Anomaly Detection using
LSTMTF

This chapter explores two distinct directions from the field of anomaly detection in
nonlinear systems, namely tampering and fault detection.

A significant number of tampering attempts have been observed in the automotive
industry, specifically targeting environmental protection systems. These attempts have
been identified in numerous studies such as [341] and [35]. Furthermore, as the severity of
tampering reached critical levels, large-scale research and innovation projects have been
dedicated to removing tampering in emissions-relevant systems, e.g., the Diagnostic
Anti-Tampering Systems (DIAS) project [36].

Moving forward to the second applicability direction, namely fault detection. Fault
detection can be seen as a specific application of anomaly detection focused on identifying
deviations from the normal behavior of the system caused by sensor failures, component
failures, or interventions in the system. Yoon and Macgregor in [20] state that “the
purpose of fault detection is to determine the occurrence of an abnormal event in a
process”. Furthermore, as highlighted by Amini and Zhu [37] misclassifying normal
samples as faults can result in unnecessary operational disruptions and increased labor

costs.

5.1 Proposed Anomaly Detection Solutions

To address the previously described directions within the anomaly detection field, namely
tampering and fault detection, this chapter introduces two anomaly detection ensembles.
The ensembles leverage the modeling capabilities of LSTMTFs, which are used as a
means to model the monitored nonlinear systems. The ensembles also incorporate
Cumulative Sum (CUSUM) Control chart and Histogram distance-based detection
approaches that monitor the changes in the LSMTF prediction residuals. Detector

decisions are fused using two majority voting-based techniques.
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During the detection phase, each detector monitors a signal (e.g., a variable) by
analyzing the deviations from the normal learned behavior. Employing a threshold-based
methodology, each detector outputs a binary decision regarding the validity of a new
data point. The final decision is given by the ensemble using majority voting-based

techniques.

5.1.1 Ensemble Architecture

A common element in the ensembles is the MISO predictive LSTMTF model. In both
ensembles, the base detectors monitor one specific signal by constantly analyzing the
prediction errors received from the predictor, using two distinct techniques. These
detectors are the Cumulative Sum (CUSUM) Based Detector (CBD) and the Histogram
Distance Based Detector (HBD). Employing a consistent terminology, the ensembles
are labeled as CBE and HBE, based on the utilized detection method.

Individual decisions of the base detectors are combined using two methodologies.
First, utilizing a majority voting scheme. Second, utilizing a novel Adaptive Majority
Weighted Voting (AMWYV) fusion methodology that takes into account the historical

decisions of each detector and outputs one of three decisions: normal, alert, and warning.

5.1.2 Base Detectors Architecture

The CBD monitors changes, in both the mean and variance values of the LSTMTF
prediction error, using two variants of the 1-CUSUM scheme [38]. The 1-CUSUM
scheme has the ability to detect changes (i.e., increase and decrease shift) in both
mean and variance values, using a single two-sided control chart, which works with
single observations. The first proposed variant utilizes the CUSUM chart as originally
proposed in [38], for a point-by-point CUSUM computation, while the second variant
employs a sliding window methodology, which computes the CUSUM values over a
sliding window.

The base detector of the second ensemble, named HBD, also utilizes LSTMTF
predictive models but processes prediction errors differently. First, HBD constructs the
histogram of the prediction errors over a given time window. Second, using a custom
distance metric, it computes the distance between the histogram of the prediction errors
of the training data and the histogram of the data contained in the current time window.

Last, each detector outputs a binary decision using a threshold-based approach.

5.1.3 Adaptive Majority Weighted Voting Scheme

The proposed fusion technique, applied for tampering detection, is a modified version
of the Majority Weighted Voting scheme, with an additional historical reputation
component. That is, at each time step, the weights of the detectors are adjusted

(e.g., increased or decreased) depending on whether the detector votes the same as the
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majority or not. The weights are adjusted by a percentage, which is computed based
on the previous decisions of said detector (e.g., if in the past, it has voted the same as
the majority). This weight-adjustment methodology awards higher weights to detectors
that vote the same as the majority compared to the detectors that more often disagree
with the majority. Furthermore, the weights can drop to zero, thus temporarily ignoring
that detector decision.

The final decision of the ensembles can be one of the following: normal, alert, or
warning. The warning state is triggered when the majority vote does not trigger an alert
but there is at least one detector that identified a tampered observation. Considering
that each detector monitors a different signal, there is the possibility that tampering one
or more signals might not affect the rest of signals, especially if the physical tampered
component is not running in a closed loop. Thus, by generating a warning, further

investigation can be carried out on that component.

5.2 Summary

This chapter first addressed a new emerging threat, namely tampering of the vehicle’s
environmental protection systems. Tampering can have serious effects on both human
health and the environment, as tampered vehicles emit higher concentrations of
pollutants, such as nitrogen oxides and particulate matter. Additionally, this chapter
also introduced an ensemble-based approach to fault detection in continuous nonlinear
systems.

In response to the former threats, this chapter proposed two ensemble-based
methodologies for tampering detection. The proposed solutions utilize predictive
LSTMTF models in conjunction with CUSUM and histogram distance-based detectors.
The CUSUM and histogram distance-based detectors receive as input the prediction
error from the predictive models and output a binary decision using a threshold-based
approach.

When applied to tampering detection, the proposed solutions obtained notable
results, including 0% False Positive Rates on all datasets and up to 100% detection
rates in most cases. Furthermore, the ensembles were compared to state-of-the-art
tampering detection methodologies with promising results. This chapter also provides
resource consumption and scalability measurements on a reference embedded system,
demonstrating the possibility of integrating the proposed solutions in an actual embedded
environment.

In the context of fault detection, the developed ensemble technique demonstrated
notable efficiency by achieving a 100% detection rate with 0% FPR for every unknown
fault. The same results were observed even on challenging faults, including faults 3, 9,
and 15. Furthermore, the ensemble technique outperformed numerous other detection

methods from the scientific literature.



Chapter 6

Conclusions

In alignment with the first and fifth research objectives, the third chapter introduced
an approach for nonlinear system modeling, namely the LSTMTF model. This model
encompasses an LSTM model with a modified version of the Teacher Forcing algorithm
applied during both training and inference for datasets originating from continuous
nonlinear systems.

To validate the LSTMTF model, an extensive hyperparameter and benchmark
analysis was performed on a popular reference dataset. This extensive evaluation
included various hyperparameters and multiple model architectures. Furthermore, the
prediction performance of the LSTMTF model was compared with 15 state-of-the-art
modeling techniques, with promising results. The experimental results also revealed that
the LSTMTF model can model the behavior of nonlinear systems even with reduced
architectures and complexity.

In alignment with the second and fifth research objectives, the fourth chapter
introduced two feature selection methodologies. The first feature selection approach
uses Pearson’s correlation coeflicient between possible input candidates and the output
variable during the selection process. The second proposed approach encompasses a
novel feature selection and ranking methodology. This approach utilizes the Energy
Distance first as a means to quantify the distances between the prediction residuals and
compute a score, which is later utilized in the ranking and selection procedures. The
latter feature selection approach was experimentally compared with 7 state-of-the-art
regression feature selection approaches.

As stated above, the LSTMTF model utilizes the TF algorithm during both training
and inference, where the previous observed output value is fed as an additional input at
each time step. This raised the question whether models that utilize this TF approach
heavily rely only on the previous ground-truth value and ignore other exogenous inputs.
In this direction, three assumptions were introduced and empirically tested, utilizing a

methodology inspired by sensitivity analysis. To analyze these assumptions, different
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scenarios were generated by sequentially disabling inputs or setting constant ground
truth values for the output variable.

In addition, the fourth chapter also introduced a method for dealing with missing
data in real time. The experimental results highlighted that using this method, the
model can effectively handle missing values while making predictions, improving the
robustness and reliability of the LSTMTF model.

To address the last three research objectives, in the fifth chapter, the LSTMTF
model was employed as part of two novel proposed anomaly detection ensembles. These
ensembles also encompass CUSUM and Histogram distance-based detectors which are
utilized to monitor the LSTMTFs prediction residuals. The CUSUM-based detectors
function in two modes, point-by-point and window-based. For the second type of
detector, which monitors the changes in the distribution of the residuals, a new distance
metric was proposed and formally demonstrated. The detector decisions are fused
using two approaches. First, utilizing a majority voting scheme. Second, using a novel
adaptive weighted majority voting scheme that accounts for the historical decision of
each detector in the weight adjustment procedures.

The proposed anomaly detection ensembles were validated in two distinct scenarios
from the field of anomaly detection, namely automotive tampering and nonlinear system
fault detection. The experimental results performed on four datasets highlighted the
validity of the proposed ensembles, revealing low false alerts and high detection rates in
most of the tested tampering scenarios and analyzed faults. In both anomaly detection
scenarios, the proposed ensembles were compared with 24 state-of-the-art proposed
solutions, with promising results. Specifically, the proposed ensembles outperformed
other methods in terms of false positive rates, true positive rates, and detection delays
in most experimental scenarios.

The fifth chapter also presented resource measurement results, performed on an
embedded device with limited resource capabilities. These measurements were performed
to verify the possibility of integrating our approaches in resource-constrained embedded
devices and included CPU, Memory, and Scalability measures. The results of these
experiments demonstrated the possibility of integrating the proposed solutions in a real

embedded environment with low resource consumption impact.

6.1 Scientific Contributions

This section summarizes the significant scientific contributions of the thesis.
e Chapter 2:
1. Extensive review of the scientific literature in the direction of the thesis. This
includes nonlinear systems, machine learning-based modeling, neural network
architectures, hyperparameter selection, feature analysis, and two domains

of application for anomaly detection.
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e Chapter 3:

1.

The design and development of the LSTMTF model, a Long Short-Term
Memory model with a variant of Teacher Forcing, for nonlinear system

modeling utilizing time series data.

. Extensive benchmark and hyperparameter analysis of the LSTMTF model on

a popular dataset originating from a representation of a reference nonlinear
system. This evaluation includes various hyperparameters (e.g., sequence
length, mini-batch size, learning rate, hidden units, TF lags) and multiple
model architectures and prediction modes (e.g., Multi-Input Single Output,
Multi-Input Multi Output, Many-to-Many, Many-to-One).

Training/Testing time measurements for the analyzed LSTMTF architectures.
Extensive comparisons with 15 state-of-the-art approaches used in the
scientific literature for nonlinear modeling. This includes well-established
and state-of-the-art parametric and non-parametric forecasting, regression,

and prediction models.

5. Performance comparison of the LSTMTF model and other prediction
algorithms with manual selection and automatic hyperparameter
optimization.

e Chapter 4:

1.

The design and development of a novel feature analysis methodology for
regression models that encompasses backward-based feature ranking and
forward-based feature selection techniques.

Performance comparisons with 7 well-established feature selection techniques.

. Complexity and training/testing time measurements for the LSTMTF model

with and without feature selection.

. An in-depth overfitting analysis of the LSTMTF model, utilizing three

distribution distance metrics and testing three proposed overfitting

assumptions.

. The design of a methodology to deal with missing values during testing

utilizing the LSTMTF model. Missing values caused by erroneous sensor

reading or communication errors.

e Chapter 5:

1.

The design and development of an ensemble-based anomaly detection
framework that encompasses the following components:

— The design of Cumulative Sum and Histogram Distance-based anomaly
detectors capable of two operation modes, namely point-by-point and
window-based.

— The design and development of unsupervised anomaly detection
ensembles that incorporate LSTMTF predictors together with the

detectors designed above.
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— The design of a new adaptive majority-weighted voting fusion scheme for
the ensemble. This fusion scheme accounts for the historical decisions of
the detectors in the weight adjustment procedures.

2. The design and development of new parameter selection approaches for the
anomaly detection ensembles.

3. The applicability of the anomaly detection ensembles to solve real-world
issues, namely automotive tampering and nonlinear system fault detection,
with promising results.

4. In both anomaly detection directions, the ensembles are compared with a total
of 24 related anomaly detection approaches, with promising results in terms
of high detection rates, low false alerts, and detection delays. Additionally,
in the fault detection direction: the successful detection with high accuracy
of three faults that are considered difficult to detect by numerous researchers
throughout the literature.

5. Performance measures in terms of CPU, memory usage, and scalability on

resource-limited devices.

6.2 Future Work

As shown in the fifth chapter, supervised techniques that utilize classifiers, trained with
both anomalous and clean observations, yield superior results in comparison. However,
the scarcity and sparsity of available datasets still demand additional research towards
unsupervised approaches. An interesting future research direction involves utilizing
unsupervised detection approaches capable of identifying and classifying the source of
the anomaly (e.g., anomalous signal). Moreover, the integration of explainable artificial
intelligence techniques remains an open and interesting research direction.

An additional possible direction is the exploration of various other unsupervised
detection approaches and techniques, apart from neural networks. Future research could
focus on developing approaches that are trained with limited anomaly-free observations
but are capable of detecting abnormal behaviors with high accuracy. Specific research
directions might include the introduction of novel techniques and algorithms that can
adapt to evolving system behaviors.

Although feature analysis, together with missing data techniques, remain widely
researched directions, further study in various other domains, on datasets originating

from both linear and nonlinear systems, might provide superior solutions.
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