GEORGE EMIL PALADE UNIVERSITY OF MEDICINE, PHARMACY, SCIENCE, AND TECHNOLOGY OF TARGU MURES SCHOOL OF DOCTORAL STUDIES

## TARGU MUREŞ, 2020



SUMMARY OF THE DOCTORAL THESIS

# Increasing exercise capacity by scientifically directing sports training in crosscountry and biathlon skiing

PhD Student **Ştefan Adrian Martin** 

PhD Supervisor Dan Dobreanu

#### Introduction

Through research studies important changes are observed in the elite athlete exercise capacity. The contribution of specialized science and specific medical activities is often discussed in terms of increasing the athletes working capacity during the training stages. However, in cross country skiing, the use of cardio-pulmonary assessments nationwide, is insignificant. Lack of data regarding both monitorization and training periodization could be much more related to the recent national and international performances.

Therefore, our hypothesis is that under both low and high intensity exercise training, physical effort can increase aerobic power, under both speed and resistance, while improving oxygen consumption and increasing  $VT_1$  and  $VT_2$  ratio.

## **Study Methodology**

The doctoral thesis is founded on multiple observational studies, which consisted of several physiological test, anthropometric measurements and tracking during training conditions in order to test the existing hypothesis. The studies were conducted during the 2017 and 2018 cross-country skiing and biathlon training season. The study sample consisted of 13 international competitive athletes, members of the national cross-country and biathlon teams. The study group (n=13) was separated into two sub groups (n=2). Group 1 was also called  $G_1$  while group 2 was referred to as  $G_2$ .  $G_1$  group was composed of cross country skiing athletes (n=6), compared to  $G_2$  group (n=7), formed of biathlon athletes.

## Study protocol

The study protocol was applied over 270 days, involving several effort capacity and resting metabolic rate measurements by using Cosmed Quark CPET equipment, while tracking the training outcomes over the predefined training periods. The general training phase was referred to as stage I ( $f_{1-3}$ ), representing the first training stage. The specific training stage, namely stage II, the pre competition stage, stage III and the competition phase, stage IV represented the main training stages during the study period. Over the predefined period, we conducted three physiological exercise tests (n=3), abbreviated as  $T_{1-3}$ , which measured exercise capacity by assessing the  $VO_{2max}$  value. Three resting metabolic rate (RMR) measurements (n=3) abbreviated as  $R_{1-3}$ , were conducted at 30 - 40 days apart. Secondly, but of particular importance, daily training monitoring along with anthropometric and baseline functional analysis, consisting of heart rate and blood pressure measurements were conducted as well.

### Results

Comparative analysis over exercise capacity assement

No statistically significant differences (p> 0.05) were obtained between  $G_1$  and  $G_2$  groups regarding both the oxygen volume and the VE (3723 vs. 4004 ml / min; 98.7 vs. 97.4 l / min). However, significant statistical differences were obtained on Rf (44.7

vs. 37.5 c / min), with a statistically significant relationship over the tidal volume (2.24 vs. 2.45) (p = 0.01). Between the two groups, the carbon dioxide removal ratio (3478 vs. 3779 ml / min) did not differ statistically (p> 0.05). Thus,  $CO_2$  equivalent (29.09 vs. 27.4) (p = 0.0089) along with the respiratory exchange ratio (1.17 vs. 1.13) were significantly different as seen through p = 0.0391. Further on,  $O_2$  equivalent (25.8 vs. 24.79),  $VO_2/HR$ , along with  $PetO_2$  and  $PetCO_2$  failed to be significantly different over the study groups (p> 0.05).

The two study groups illustrate lack of differences regarding  $VT_1$  and  $VT_2$  ventilatory thresholds, determined by VE,  $VE/VO_2$ ,  $VE/VCO_2$  use. Thus,  $VT_1$  for  $G_1$  and  $G_2$ , through 80 vs. 79.59% of  $HR_{max}$  does not differ statistically from  $T_2$  (p>0.05). Respiratory exchange ratio and  $CO_2$  equivalent imposed differences in energy metabolism. Thus, the energy density (17.63 vs. 19.77 kcal / min), along with fat (32.79 vs. 24.5%) and the carbohydrate (67.2 vs. 75.4%) ratio were significantly different (p<0.01). Significant statistical differences are identified during the  $T_2$  evaluation between the two groups, regarding both effort capacity and physiological adaptations.

#### **Conclusions**

Conducting training by using individual adaptations and progress related data, can improve exercise capacity. The main results suggested that a progressive exercise intensity will positively influence oxygen consumption, along with both  $VT_1$  and  $VT_2$  values. Starting from this point an individual progress profile, following training volume and effort intensity during several stages, led to important results and the following main partial conclusion:

Individual adaptations can be assesed during medium term periods by measuring the resting metabolic rate, while monitoring the body weight changes and the energy balance. Although no significant differences were seen in the RMR values, the respiratory exchange ratio was correlated with the training characteristics. The individual progress and improvements in the exercise capacity, were enhanced through aerobic training, as see in  $G_2$  unlike  $G_1$  group during the general training phase. Further on, 95 and 98% of the total exercise volume was conducted in aerobic training stages (45 - 80% of  $VO_{2max}$ ), whereas an increased effort intensity (>80% of  $VO_{2max}$ ) did not exceed between 2 and 5% of the assigned volume. As against  $G_2$  results, higher exercise intensity increased  $VT_1$  in  $C_1$ , without any changes in  $VO_{2max}$  values.